generative$31256$ - significado y definición. Qué es generative$31256$
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es generative$31256$ - definición

Generative Topographic Mapping; Generative topographic mapping; Generative Topographic Map

generative         
WIKIMEDIA DISAMBIGUATION PAGE
Generative (disambiguation)
['d??n(?)r?t?v]
¦ adjective
1. relating to or capable of production or reproduction.
2. Linguistics relating to the application of a set of rules in order to produce all and only the well-formed items of a language.
Derivatives
generativity noun
Generative         
WIKIMEDIA DISAMBIGUATION PAGE
Generative (disambiguation)
·adj Having the power of generating, propagating, originating, or producing.
Generative theory of tonal music         
THEORY OF MUSIC
Generative Theory of Tonal Music
A generative theory of tonal music (GTTM) is a theory of music conceived by American composer and music theorist Fred Lerdahl and American linguist Ray Jackendoff and presented in the 1983 book of the same title. It constitutes a "formal description of the musical intuitions of a listener who is experienced in a musical idiom" with the aim of illuminating the unique human capacity for musical understanding.

Wikipedia

Generative topographic map

Generative topographic map (GTM) is a machine learning method that is a probabilistic counterpart of the self-organizing map (SOM), is probably convergent and does not require a shrinking neighborhood or a decreasing step size. It is a generative model: the data is assumed to arise by first probabilistically picking a point in a low-dimensional space, mapping the point to the observed high-dimensional input space (via a smooth function), then adding noise in that space. The parameters of the low-dimensional probability distribution, the smooth map and the noise are all learned from the training data using the expectation-maximization (EM) algorithm. GTM was introduced in 1996 in a paper by Christopher Bishop, Markus Svensen, and Christopher K. I. Williams.